Effect of Magnesium Chloride and Magnesium L-Aspartate on Seizure Threshold in Rats under Conditions of Dietary Magnesium Deficiency

A. A. Spasov, I. N. Iezhitsa, M. V. Kharitonova, and M. S. Kravchenko

Translated from *Byulleten' Eksperimental'noi Biologii i Meditsiny*, Vol. 144, No. 8, pp. 181-183, August, 2007 Original article submitted March 14, 2007

We studied the effect of Mg-L-aspartate, MgCl₂, and their combinations with vitamin B_6 , magne B_6 , and MgSO₄ on seizure threshold in rats with dietary Mg²⁺ deficiency. Mg²⁺ deficiency was followed by a decrease in the threshold dose of corazol (from 79.20 to 49.48 mg/kg), shortening of the latency of the first jerk (by 33.6%, p=0.012), and reduction of the time to the first episode of clonic seizures (by 32.6%, p=0.011). Seizure threshold and latencies of the first jerk and first episode of clonic seizures increased over 3 weeks after peroral administration of Mg²⁺ salts. The combination of Mg²⁺ salts and pyridoxine was most effective in this respect.

Key Words: corazol; seizures; magnesium chloride; magnesium L-aspartate; pyridoxine

Magnesium plays an important role in the development of seizure readiness. Generalized tonic-clonic seizures were shown to be typical of patients with isolated idiopathic hypomagnesemia [3]. Pronounced hypomagnesemia is often revealed in children with epilepsy, which positively correlates with the severity of the disease. It is important to regulate Mg²⁺ metabolism in epileptic patients, since therapy with anticonvulsants (*e.g.*, phenobarbital, hexamidine, and diphenin) can be accompanied by hypomagnesemia.

The severity of corazol-induced seizures increases over the 1st days of dietary Mg²⁺ deficiency. By contrast, Mg²⁺ salts have an anticonvulsant effect [5]. They have different bioavailability, which may increase during combined administration of salts with pyridoxine. In this respect the most effective organic and inorganic salts are Mg-L-aspartate and MgCl₂, respectively. However, the influence of Mg²⁺ salts administered alone or in combination

Institute of Pharmacology, Department of Pharmacology, Volgograd State Medical University. *Address for correspondence:* farm@ vlpost.ru. A. A. Spasov

with vitamin B_6 on seizure threshold remains unknown.

Here we studied the effects of Mg-L-aspartate, $MgCl_2$, and their combinations with vitamin B_6 on corazol-induced seizures.

MATERIALS AND METHODS

Experiments were performed on 130 male outbred albino rats weighing 170-250 g. The animals were divided into groups. Twenty-five rats were intact. Other rats fed a Mg2+-deficient diet (ICN Biomedicals Inc.) to induce pathological changes associated with dietary Mg²⁺ deficiency. Deionized water was used for drinking and food preparation. Control animals (n=25) fed a normal Mg²⁺ diet (500 mg/kg Mg²⁺) and drank water with 20 mg/liter Mg²⁺. The development rate and severity of hypomagnesemia were estimated by a spectrophotometric study of Mg²⁺ concentration in the plasma and erythrocytes from animals (color reaction with titanium yellow). The diagnosis of moderate hypomagnesemia was made from a decrease in Mg2+ concentration in erythrocytes and plasma (below 1.4 and 0.7 mmol/

A. A. Spasov, I. N. Iezhitsa, et al.

liter, respectively). The animals of treatment groups perorally received Mg^{2+} salts (Mg-L-aspartate, $MgCl_2$, and their combinations with vitamin B_6). The reference preparations included magne B_6 (Mg lactate and vitamin B_6) and $MgSO_4$ (50 mg elementary Mg^{2+} per kg body weight, 21 days until normalization of Mg^{2+} concentration in the plasma and erythrocytes). Vitamin B_6 in a dose of 5 mg/kg was added to $MgCl_2$ and Mg-L-aspartate (ratio 1:10).

Compensation for Mg^{2+} deficiency (X) was calculated as follows:

$$X = \frac{C_{\text{salt}} - C_{\text{diet}}}{C_{\text{intact}} - C_{\text{diet}}} \times 100\%,$$

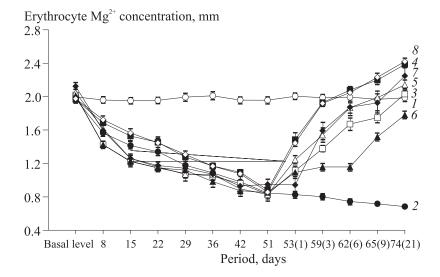
where C_{salt} is Mg^{2+} concentration in animals after salt administration; C_{diet} is Mg^{2+} concentration in animals feeding a Mg^{2+} -deficient diet; and C_{intact} is Mg^{2+} concentration in animals of the control group.

Seizure threshold was measured on day 21 after administration of salts [1]. The animals received subcutaneous injection of corazol in doses of 50-90 mg/kg. The latency of 4-point seizures (clonic seizures with loss of the turning response; and subsequent tonic seizures with forelimb extension) was measured after administration of corazol in this dose. The dose of corazol that increased the threshold of seizures in 50% animals (TID₅₀) was evaluated by the probit analysis.

Data processing and evaluation of TID₅₀ were performed by means of regression analysis.

RESULTS

The decrease in Mg^{2+} concentration in the plasma (by 51%) and erythrocytes (by 56%) was accompanied by body weight loss (by 26.8%), hair bloom, and change in seizure threshold. The decrease in the threshold dose of corazol was accompanied by an increase in seizure readiness (by 30%) on the 7th week of the diet (Table 1). Mg^{2+} -deficient animals were characterized by a decrease in the latency of the first jerk (by 33.6%, p=0.012) and reduction of the time to the first episode of clonic seizures (by 32.6%, p=0.011) in response to treatment with corazol in a dose of 80 mg/kg.


Mg²⁺ concentration in the plasma and erythrocytes returned to normal after peroral administration of Mg²⁺ salts for 21 days.

The rate of compensation for Mg^{2+} deficiency in erythrocytes by salts decreased in the following order: Mg-L-aspartate with vitamin B_6 (133.37 \pm 2.53%) \geq MgCl $_2$ and vitamin B_6 (130.72 \pm 1.82%)>Mg-L-aspartate (120.18 \pm 11.91%) \geq magneB $_6$ (111.93 \pm 4.15%)>MgCl $_2$ (103.54 \pm 2.34%)>MgSO $_4$ (84.24 \pm 2.28%, Fig. 1).

The ability of salts to increase (normalize) low value of TID₅₀ in animals of the diet group decreased in the following order: Mg-L-aspartate and vitamin B₆ (83.19 mg/kg corazol)≥MgCl₂ and vitamin B₆ (81.15 mg/kg corazol)≥MgCl₂ (79.32 mg/kg corazol)>Mg-L-aspartate (74.95 mg/kg corazol)> MgSO₄ (73.27 mg/kg corazol)>magneB₆ (72.55 mg/kg corazol, Table 1).

TABLE 1. Effect of Mg²⁺ Salts (50 mg Elementary Mg²⁺ per kg Body Weight) on Corazol-Induced Seizure Threshold under Conditions of Dietary Mg²⁺ Deficiency

Preparation	TID ₁₆	TID ₅₀	TID ₈₄
Intact rats	69.60	79.20	90.11
	(64.12-75.56)	(72.96-85.97)	(83.01-97.82)
Mg ²⁺ -deficient diet	35.27	49.48	69.42
	(33.91-36.69)	(47.57-51.47)	(66.74-72.21)
$MgCl_2$	58.59	79.32	107.37
	(50.65-67.78)	(68.57-91.75)	(92.82-124.20)
MgCl ₂ +vitamin B ₆	59.41	81.15	110.85
	(52.79-66.85)	(72.12-91.32)	(98.51-124.74)
MagneB ₆	55.02	72.55	95.67
	(51.45-58.83)	(67.85-77.58)	(89.47-102.30)
MgSO ₄	55.37	73.27	96.96
	(51.27-59.79)	(67.84-79.13)	(89.78-104.72)
Mg-L-aspartate	57.30	74.95	98.02
	(53.95-60.86)	(70.57-79.60)	(92.29-104.11)
$Mg-L$ -aspartate+vitamin B_6	63.63	83.19	108.77
	(56.41-71.77)	(73.75-93.84)	(96.42-122.68)

Fig. 1. Mg²⁺ concentration in erythrocytes of Mg²⁺-deficient animals after administration of magnesium salts. The duration of treatment is shown in brackets. Intact rats (1); Mg²⁺-deficient diet (2); MgCl₂ (3); MgCl₂+vitamin B₆ (4); magneB₆ (5); MgSO₄ (6); MgL-aspartate (7); and Mg-L-aspartate+vitamin B₆ (8).

The animals receiving Mg^{2+} salts exhibited a higher latency of the first jerk in response to 80 mg/kg corazol compared to rats feeding a Mg^{2+} -deficient diet. This parameter in animals receiving $MgCl_2$ and Mg-L-aspartate in combination with vitamin B_6 was higher than in Mg^{2+} -deficient rats (by 71.8 (p<0.05) and 66.6% (p<0.05), respectively). The time to the first episode of clonic seizures in animals of these groups decreased by 53.3 (p<0.05) and 61% (p<0.05), respectively.

We showed that magnesium salts in combination with pyridoxine have the highest anticonvulsant activity. Pyridoxine deficiency may cause seizures in children. Homeostasis of Mg²⁺ and pyridoxine are closely related. On the one hand, pyridoxine provides Mg²⁺ transport and storage in cells. On the other hand, pyridoxine enters the composition of alkaline phosphatase required for supply of tissues with pyridoxal phosphate [6]. Pyridoxine is a cofactor in the synthesis of various neurotransmitters (serotonin, norepinephrine, dopamine, and GABA).

These data explain the fact that salts in combination with vitamin B₆ induce the most potent anticonvulsant effect.

Our results indicate that Mg^{2+} salts in combination with vitamin B_6 have the highest anticonvulsant activity. These compounds surpass magne B_6 and $MgSO_4$ in the anticonvulsant effect.

REFERENCES

- Manual on Experimental (Preclinical) Study of New Pharmacological Substances [in Russian], Ed. R. U. Khabriev, Moscow (2005).
- M. Derchansky, E. Shahar, R. A. Wennberg, et al., Hippocampus, 14, No. 8, 935-947 (2004).
- 3. V. R. Dharnidharka and P. R. Carney, *Pediatr. Neurol.*, **33**, No. 1, 61-65 (2005).
- 4. M. Firoz and M. Graber, *Magnes. Res.*, **14**, No. 4, 257-262 (2001).
- P. Maurois, F. Bailly, N. Pages, et al., Advances in Magnesium Research: Nutrition and Health, Eastleigh (2001), pp. 419-422.
- E. Planells, A. Lerma, N. Sanchez-Morito, et al., J. Am. Coll. Nutr., 16, No. 4, 352-356 (1997).